Saturday, October 3, 2009

Stem cell

Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s. The two broad types of mammalian stem cells are: embryonic stem cells that are isolated from the inner cell mass of blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

Stem cells can now be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Highly plastic adult stem cells from a variety of sources, including umbilical cord blood and bone marrow, are routinely used in medical therapies. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.


The classical definition of a stem cell requires that it possess two properties:

* Self-renewal - the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.
* Potency - the capacity to differentiate into specialized cell types. In the strictest sense, this requires stem cells to be either totipotent or pluripotent - to be able to give rise to any mature cell type, although multipotent or unipotent progenitor cells are sometimes referred to as stem cells.

Potency definitions
Pluripotent, embryonic stem cells originate as inner mass cells within a blastocyst. The stem cells can become any tissue in the body, excluding a placenta. Only the morula's cells are totipotent, able to become all tissues and a placenta.
Human embryonic stem cells
A: Cell colonies that are not yet differentiated.
B: Nerve cell

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.

* Totipotent (a.k.a omnipotent) stem cells can differentiate into embryonic and extraembryonic cell types. Such cells can construct a complete, viable, organism. These cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent.
* Pluripotent stem cells are the descendants of totipotent cells and can differentiate into nearly all cells, i.e. cells derived from any of the three germ layers.
* Multipotent stem cells can differentiate into a number of cells, but only those of a closely related family of cells.
* Oligopotent stem cells can differentiate into only a few cells, such as lymphoid or myeloid stem cells.
* Unipotent cells can produce only one cell type, their own, but have the property of self-renewal which distinguishes them from non-stem cells (e.g. muscle stem cells).


The practical definition of a stem cell is the functional definition - a cell that has the potential to regenerate tissue over a lifetime. For example, the gold standard test for a bone marrow or hematopoietic stem cell (HSC) is the ability to transplant one cell and save an individual without HSCs. In this case, a stem cell must be able to produce new blood cells and immune cells over a long term, demonstrating potency. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, where single cells are characterized by their ability to differentiate and self-renew. As well, stem cells can be isolated based on a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. Considerable debate exists whether some proposed adult cell populations are truly stem cells.


Embryonic stem cell lines (ES cell lines) are cultures of cells derived from the epiblast tissue of the inner cell mass (ICM) of a blastocyst or earlier morula stage embryos. A blastocyst is an early stage embryo—approximately four to five days old in humans and consisting of 50–150 cells. ES cells are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.

Nearly all research to date has taken place using mouse embryonic stem cells (mES) or human embryonic stem cells (hES). Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin and require the presence of Leukemia Inhibitory Factor (LIF). Human ES cells are grown on a feeder layer of mouse embryonic fibroblasts (MEFs) and require the presence of basic Fibroblast Growth Factor (bFGF or FGF-2). Without optimal culture conditions or genetic manipulation, embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the presence of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency. The cell surface antigens most commonly used to identify hES cells are the glycolipids SSEA3 and SSEA4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.

After nearly ten years of research, there are no approved treatments using embryonic stem cells. The first human trial was approved by the US Food & Drug Administration in January 2009. ES cells, being pluripotent cells, require specific signals for correct differentiation - if injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face. Many nations currently have moratoria on either ES cell research or the production of new ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.


Ray mumme said...

This is great information; we need more people in this arena on Stem Cells. Wouldn’t it be great if you could release you own adult stem cells. I would like to introduce you to the World’s First Stem Cell Enhancer. It is proven by Science and Medical Teams in a Peer Review study.
“The Cardiovascular Revascularization Medicine” “ 8 (2007) 189–202”
Adult stem Cells can become any organ, tissue, or muscle in the body. After taking 1 gram of StemEnhance your body releases 3 to 4 million adult stem cells, into the blood stream. This is the body’s natural way to renew, refresh, and rejuvenate itself anyway. We are unleashing a whole new system of the body that has always been there. This is an all natural botanical extract for everyone.
Ray Mumme

Stem Cell Blog said...

Great blog! Let me know if you want to link up.