Friday, September 18, 2009

Transcriptome

The transcriptome is the set of all messenger RNA (mRNA) molecules, or "transcripts," produced in one or a population of cells. The term can be applied to the total set of transcripts in a given organism, or to the specific subset of transcripts present in a particular cell type. Unlike the genome, which is roughly fixed for a given cell line (excluding mutations), the transcriptome can vary with external environmental conditions. Because it includes all mRNA transcripts in the cell, the transcriptome reflects the genes that are being actively expressed at any given time, with the exception of mRNA degradation phenomena such as transcriptional attenuation. The study of transcriptomics, also referred to as Expression Profiling, examines the expression level of mRNAs in a given cell population, often using high-throughput techniques based on DNA microarray technology. The use of next-generation sequencing technology to study the transcriptome at the nucleotide level is known as RNA-Seq .

Transcriptomics is the branch of chemistry that deals with the study of messenger RNA molecules produced in an individual or population of a particular cell type.

Applications and analysis

The transcriptomes of stem cells and cancer cells are of particular interest to researchers who seek to understand the processes of cellular differentiation and carcinogenesis. A number of organism-specific transcriptome databases have been constructed and annotated to aid in the identification of genes that are differentially expressed in distinct cell populations or subtypes; however, the analysis of relative mRNA expression levels can be complicated by the fact that relatively small changes in mRNA expression can produce large changes in the total amount of the corresponding protein present in the cell. One analysis method, known as Gene Set Enrichment Analysis, identifies coregulated gene networks rather than individual genes that are up- or down-regulated in different cell populations.

mRNA regulation

Although microarray studies can reveal the relative amounts of different mRNAs in the cell, levels of mRNA are not directly proportional to the expression level of the proteins they code for. The number of protein molecules synthesized using a given mRNA molecule as a template is highly dependent on translation-initiation features of the mRNA sequence; in particular, the ability of the translation initiation sequence is a key determinant in the recruiting of ribosomes for protein translation. The complete protein complement of a cell or organism is known as the proteome.

A study of 158,807 mouse transcripts revealed that 4520 of these transcripts form antisense partners that are base pair complementary to the exons of genes. These results raise the possibility that significant numbers of "antisense RNA-coding genes" might participate in the regulation of the levels of expression of protein-coding mRNAs.

No comments: